Practice Midterm 2-solutions
 No homework for the next week. Remember, the Second exam will be on Wednesday, March 25 during the regular class time.

March 22, 2015

1 Problem 1. True or False.

Solution:

1. True.
2. False.
3. False.
4. False.
5. True.

2 Problem 2. A subspace V of \mathbb{R}^{3} is spanned by the columns of

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
1 & 1
\end{array}\right)
$$

(a) Apply the Gram-Schmidt process to find two orthonormal vectors u_{1} and u_{2} which also span V.

Solution:
By the process of Gram-Schmidt, we just follow the steps:

Firstly, let

$$
v_{1}=c_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \Longrightarrow \quad \text { normalizing } \quad u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

and

$$
v_{2}=c_{2}-\frac{c_{2}^{T}, v_{1}}{v_{1}^{T}, v_{1}} v_{1}=\frac{1}{3}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \Longrightarrow \quad \text { normalizing } \quad u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

(b) Find an orthogonal matrix Q so that $Q Q^{T}$ is the matrix which orthogonally projects vectors onto V.

Solution:

The general approach $P=A\left(A^{T} A\right)^{-1} A^{T}$.
Take

$$
Q=\left(\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 / \sqrt{3} & 1 / \sqrt{6} \\
-1 / \sqrt{3} & 2 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{6}
\end{array}\right)
$$

since $Q^{T} Q=I_{2 \times 2}$ then $P=Q Q^{T}=u_{1} u_{1}^{T}+u_{2} u_{2}^{T}$ is the required projection.
(c) Find the best possible solution to the linear system

$$
Q=\binom{x}{y}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

Solution:

Minimizing the sum of squared errors $\|Q x-b\|^{2}$ with respect to x yields

$$
Q^{T} Q x=Q^{T} b
$$

But $Q^{T} Q=I_{2 \times 2}$ by ortho-normality. So we find

$$
x=Q^{T} b=\binom{2 / \sqrt{3}}{5 / \sqrt{6}} .
$$

3 Problem 3. Given

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) \text { and } b=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
$$

(a) Find the matrix P which projects onto the column space of A.

Solution:
Note that the projection on the plane spanned by $(1,0,0)^{T}$ and $(1,1,0)^{T}$ is the same as the projection on the plane spanned by $(1,0,0)^{T}$ and $(0,1,0)^{T}$, so it is simply

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We can also use the general approach $P=A\left(A^{T} A\right)^{-1} A^{T}$, which is longer but gives the same answer.
(b) Compute the projection p of b onto this column space.

Solution:

$$
p=P b=(2,3,0)^{T}
$$

(c) Find the error $e=b-p$ and show that it lies in the left nullspace of A.

Solution:

Apparently $e=b-p=(0,0,4)^{T}$, and

$$
A^{T} e=\mathbf{0}
$$

which means e is in the left null space of A.

4 Problem 4. Calculate the determinant of the matrix A.

Solution:

We calculate step by step:

$$
\begin{aligned}
& \operatorname{det} A=\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
2 & 6 & 4 & 8 \\
3 & 1 & 1 & 2
\end{array}\right|=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -4 & -8 & -12 \\
0 & 2 & -2 & 0 \\
0 & -5 & -8 & -10
\end{array}\right|=-\left\lvert\, \begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 \\
0 & 2 & -2
\end{array} 0\right. \\
& 0
\end{aligned}-4 \begin{array}{cc}
-8 & -12 \\
0 & -5
\end{array}-8 \frac{-10}{}| | .
$$

5 Problem 5. If you know all 16 cofactors of a 4 by 4 invertible matrix A, how would you find its determinant $\operatorname{det}(A)$?

Solution:

Since $\operatorname{det}(A) \neq 0$, by Cramer's Rule, we have (the Cofactor formula):

$$
A^{-1}=\frac{C^{T}}{\operatorname{det}(A)}
$$

Multiply both sides by A :

$$
A A^{-1}=\frac{A C^{T}}{\operatorname{det}(A)} \Longrightarrow I=\frac{A C^{T}}{\operatorname{det}(A)} \Longrightarrow \operatorname{det}(A) I=A C^{T}
$$

Take the determinant in the last equality:

$$
\operatorname{det}(A)^{4}=\operatorname{det}(A) \operatorname{det}\left(C^{T}\right) \Longrightarrow \operatorname{det}(A)^{3}=\operatorname{det}\left(C^{T}\right)
$$

Finally,

$$
\operatorname{det}(A)=\operatorname{det}\left(C^{T}\right)^{1 / 3}
$$

